Who We Are - Beam and Accelerator Modeling Interest Group (BAMIG) - in CompF2: Theoretical Calculations and Simulation - Homepage: <u>snowmass-compf2-accbeammodel.github.io</u> - coordinator: Jean-Luc Vay (LBNL) also CompF-AF liaison - Accelerator Simulation via Computer Modeling - essential to beam & accelerator physics research, as well as to the design, commissioning and operation of particle accelerators - contrary to machines & accelerator complexes, development of beam & accelerator physics codes often largely uncoordinated - o large, complex: expanding range of intertwined physics topics - rapidly changing & disruptive computing hardware and software environments: from CPUs, GPUs over FPGAs to Quantum + AI/ML #### What We Did - Multi-year effort with regular bi-weekly meetings - >80 people in our mailing list, at least 1/3rd regularly active - o **26 LOIs** (2020) <u>snowmass-compf2-accbeammodel.github.io/loi/submitted.html</u> - Journal of Instrumentation (JINST), ICFA Beam Dynamics Newletters #82: Advanced Accelerator Modeling (2021): - Simulations of Future Particle Accelerators: Issues and Mitigations by David Sagan, et al. DOI:10.1088/1748-0221/16/10/T10002 - Modeling of Advanced Accelerator Concepts by Jean-Luc Vay, et al. DOI:10.1088/1748-0221/16/10/T10003 - Decided to amalgamate all inputs and topics into one topical whitepaper for Snowmass # Whitepaper to SM21, CompF - Collectively developed: <u>arXiv:2203.08335</u> (2022) Accelerator Modeling Community Whitepaper - further contributions to >4 whitepapers in AF and TF snowmass-compf2-accbeammodel.github.io/papers/submitted.html Snowmass21 Accelerator Modeling Community White Paper by the Beam and Accelerator Modeling Interest Group (BAMIG)* Authors (alphabetical): S. Biedron¹³, L. Brouwer¹, D.L. Bruhwiler⁷, N. M. Cook⁷, A. L. Edelen⁶, D. Filippetto¹, C.-K. Huang⁹, A. Huebl¹, N. Kuklev⁴, R. Lehe¹, S. Lund¹², C. Messe¹, W. Mori¹⁰, C.-K. Ng⁶, D. Perez⁹, P. Piot^{4,5}, J. Qiang¹, R. Roussel⁶, D. Sagan², A. Sahai¹¹, A. Scheinker⁹, E. Stern¹⁴, F. Tsung¹⁰, J.-L. Vay¹, D. Winklehner⁸, and H. Zhang³ ¹Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ²Cornell University, Ithaca, NY 14853, USA ³Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ⁴Argonne National Laboratory, Lemont, IL 60439, USA ⁵Northern Illinois University, DeKalb, IL 60115, USA ⁶SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA ⁷RadiaSoft LLC, Boulder, CO 80301, USA ⁸Massachusetts Institute of Technology, Cambridge, MA, 02139, USA ⁹Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹⁰University of California at Los Angeles, Los Angeles, CA 90095, USA ¹¹University of Colorado Denver, Denver, CO 80204, USA ¹²Michigan State University, East Lansing, MI 48824, USA ¹³University of New Mexico, Albuquerque, NM 87106, USA ¹⁴Fermi National Accelerator Laboratory, Batavia, IL, 60563, USA ## **Key Topics Reported On** - 1. Modeling needs RF-based acceleration; Plasma-based wakefield acceleration; Structure-based wakefield acceleration; PetaVolts per meter plasmonics and Plasmonic acceleration; Materials modeling for accelerator design; Structured plasmas; Superconducting magnets - 2. To the next frontier: ultraprecise, ultrafast virtual twins of particle accelerators Interdisciplinary simulations; End-to-end Virtual Accelerators (EVA); Virtual twins of particle accelerators - 3. Cutting-edge and emerging computing opportunities Advanced algorithms; Artificial intelligence; machine learning, and differentiable simulations; Quantum computing; Storage ring quantum computers - **4. Computational needs** Hardware: CPU/GPU time, memory, archive; Software performance, portability and scalability; Scalable I/O and in-situ analysis - **5. Sustainability, reliability, user support, training**Code robustness, validation & verification, benchmarking, reproducibility; Usability, user support and maintenance; Training and education - 6. Toward community ecosystems & data repositories Loose integration: Integrated workflows; Tighter integration: Integrated frameworks; Data repositories; Centers & consortia, collaborations with industry ## **High-Level Recommendations** - 1. Develop a **comprehensive portfolio** of particle accelerator and beam physics **modeling tools** in support of achieving Accelerator & Beam Physics Thrust Grand Challenges on intensity, quality, control, and prediction. - Develop software infrastructure to enable end-to-end virtual accelerator modeling and corresponding virtual twins of particle accelerators. - Develop advanced algorithms and methods including AI/ML modalities and quantum computing technologies. - 4. Develop **efficient and scalable software frameworks** and associated tools to effectively leverage next generation **high-performance and high-throughput computing** hardware. - 5. Develop **sustainable and reliable code maintenance** practices, community **benchmarking** capabilities, and **training** opportunities to foster the **cooperative** application of accelerator software. - 6. Foster an **open community** that spans academia, national labs and industry to **(a)** develop **software ecosystems**, libraries, frameworks and standards, **(b)** curate **data repositories**, and establish dedicated **centers and distributed consortia with open governance models**. #### **Detailed Recommendations** ### Thank you for your attention! Please refer to our whitepaper for fine-grained detail recommendations on sub-topics: arXiv:2203.08335 (2022)